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A model is presented for the dynamics of cavities associated with the cavitation in a duct 
flow. Measurements taken from cine films of cavitating flows indicate detached cavities take 
between three and four times longer to collapse than would be expected from Rayleigh's 
classical theory. To account for this, a theoretical model has been developed using the one- 
dimensional conservation equations of mass and momentum in the duct and Rayleigh's 
equation governing cavity wall motion. A numerical solution is obtained, and it is shown the 
cavity collapse time increases rapidly above the Rayleigh result when a duct parameter, 
based on maximum cavity size, duct cross-sectional area, and a flow-length scale, exceeds 
unity. 

The predictions of the model agree very well with the measurements derived from cine 
films when the flow-length scale is taken to be equal to the mean length of the attached 
cavity. 
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Introduction 

The purpose of this paper is to present a model for the dynamics 
of cavities associated with cavitating flow confined in a duct. In 
developing models of cavitation erosion and noise, it may be 
assumed for simplicity that the presence of the duct walls does 
not affect the cavity growth and collapse, apart from the 
production of a microjet for a cavity collapsing adjacent to a 
solid surface. The validity of this assumption is clearly doubtful 
especially where large "fixed" cavities are involved. Recent 
observations 1,2 of cavitating flow around convergent-divergent 
wedge and 60 ° symmetrical wedge inducers in a duct have been 
made using high-speed cine photography. These have shown the 
collapse time for such cavities is between three and four times 
longer than predicted by Rayleigh's classical theory 3 for the 
collapse of a spherical cavity in an unbounded liquid. Another 
feature of these observations is that the local mean rate of 
volume change produced by the cavity collapse is a large 
fraction, about 10~o, of the total volumetric flow rate. Both 
these observations indicate a significant interaction between the 
cavity and the duct flow. 

A theoretical model originally developed to help explain these 
observations 4 has now been extended and modified. The model 
is based on the one-dimensional conservation equations of mass 
and momentum for the flow in the duct and, in the case of 
steady-state conditions, conforms with the familiar Borda- 
Carnot analysis. The equations were originally written in terms of 
an unknown cavity volume of arbitrary shape, but they cannot 
be solved since the downstream pressure is not known. By using 
Rayleigh's equation for the motion of a spherical cavity wall, the 
equations can be solved and yield details of the cavity wall 
motion and the variation of downstream pressure. Rayleigh's 
cavity motion is seen to be applicable when the condition 
4ndaRm/A2~ 1 holds, where [a is a flow-length scale, R m 
maximum cavity radius, and A 2 duct cross-sectional area. 

Equation of motion for cavity wall 

The presence of a growing or collapsing cavity in a duct implies 
a change in volumetric flow rate between locations upstream 
and downstream of the cavity. The original theory treated this 

case, and it was concluded that this situation could not persist 
indefinitely, since either the cavity would grow infinitely large 
and the flow would become choked, or the cavity would collapse 
to nothing and cavitation would cease. Observations of 
cavitation in venturi-type channels ~'2'5'6 indicate at some 
instant part of the cavity becomes detached from the main cavity 
and is convected downstream eventually to collapse. While the 
detached part is collapsing, the remaining attached cavity 
continues to grow until the next detachment when the whole 
process is repeated. This mechanism allows the growth and 
collapse of cavities to occur while the upstream and downstream 
volume flow rates remain equal, It is assumed the inertia of the 
fluid column both upstream and downstream of the cavitation 
zone is large enough to suppress short-term variations in flow 
rate. This assumption also allows the pressure to depart from 
the steady-state, that is, Borda-Carnot, value in the short term. 
For  steady conditions over a long period, it is expected that the 
average pressure will be equal to the steady-state value. 

If the upstream and downstream flow rates are equal, the 
volumetric growth rate of the attached cavity must be exactly 
equal numerically to the volumetric collapse rate of the 
detached cavity, and the total cavity volume remains constant 
during the motion. This motion can be modeled by a source- 
sink pair where the components are separated by a distance 
corresponding to the separation of the attached and detached 
cavities. An equation of motion for the volume of either the 
attached cavity or the detached cavity can be deduced on 
assuming the source-sink pair is located within a control 
volume enclosing the fluid from the throat to a point well 
downstream of the collapsing cavity where the channel walls are 
parallel (Figure 1). The flow into and out of the control volume 
is assumed to be effectively one dimensional; that is, variations 
in pressure and velocity across the duct may be accounted for by 
using the appropriate average values. The cavities are assumed 
to contain vapor with a negligible gas content, and the growing 
cavity is assumed to be attached to the cavitation inducer at the 
throat and to span the whole of the rear of the inducer, an 
assumption that holds at low enough cavitation number. 

Since the strengths of the source and sink are equal and 
opposite, we can write 

¢ +  ~"=0  (11 
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and from the continuity equation, we obtain 

A2U2-A1U 1 = 0  (2) 

By applying the principle of conservation of momentum to the 
control volume and neglecting viscous and body forces, it can be 
deduced that 

(pt-Pv)A~-(p2-Pv)AE=pA2U~-pAtU~ +p~ Qdx (3) 

If the source and sink are assumed to be effectively located at 
two points separated instantaneously by a distance : ,  then Q is 
equal to A~ U~ both upstream and downstream of the source- 
sink pair from Eq. (2) and equal to A1U 1 + (:' or A1U 1 --(I, 
using Eq. (1), between the two components. Since A~ U~ is taken 
to be constant, the integral term becomes - p d ( :  ~')/dt in terms 
of the detached cavity. This term decomposes into 
-pgV-pUc(/', where U c is the convection velocity of the 
detached cavity, strictly relative to the effective center of the 
attached cavity. Since the detached cavity is approximately 
spherical, these terms may be written as functions of 
instantaneous cavity radius R when it is found that the term in 
involves 4~(R/A2, and that in I? involves 41tR2/A2. Since in 
experiments 2 in a duct of 800 mm 2 cross section,:  is found to be 
generally about 90 mm, and the maximum or initial value of R 
about 8 mm, the latter term is at most one tenth the former and 
generally very much smaller still. In this case, it is appropriate to 
neglect the term in l?and replace : by a suitable average value, 
:a. 

Pl P2 
=U 1 ,: / 

(a) A2 

Pl P2 

" @ ~  " U2 

A1 A2 
(b) 

Figure 1 Sketch of control volume showing attached and detached 
cavities and source-sink locations for (a) convergent-divergent 
wedge and (b) symmetrical wedge inducers 
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On substituting for U2 using Eq. (2), Eq. (3) becomes 

(~A~_L)Al_(P2-Pv~+U2~22(l_~22) [aV +--~-2 = 0  (4) A 2 \ p /  
In the case of steady flow without cavities when V= 1 ?= 0, Eq. 

(4) reduces to a result similar to the Borda-Carnot formula for 
the pressure recovery in a sudden expansion. The downstream 
pressure PB is given by 

It may be assumed the throat pressure Pl is constant and 
equal to vapor pressure throughout the motion, since the 
streamline curvature is small at this point, and it is observed that 
pressure fluctuations in the vicinity of the throat are much 
reduced compared with downstream. 7 On combining Eqs. (4) 
and (5) then, 

PB-Pv P (P2 p P v ) + f a V  =0  A2 (6) 

Since the detached cavity is presumed to be effectively spherical, 
the downstream pressure P2 - Pv, which is allowed to vary while 
the flow rate remains constant, can be related dirctly to the 
detached cavity radius by using Rayleigh's equation for cavity 
wall motion. The use of this equation requires spherical 
symmetry of motion in the vicinity of the cavity. This will be 
approximately true if the cavity is somewhat smaller than the 
duct size; the condition to be satisfied is 2nR2/A2,~ 1. Adopting 
the same example as above, this requires the cavity radius to be 
substantially less than about 11 mm. Since the initial radius of 
most cavities is about 8 ram, the assumption of symmetry in the 
early stages of the motion is questionable. However, as will be 
seen later, this does not appear to lead to any significant errors. 

Since the fluid velocity does not change downstream of the 
detached cavity, the driving pressure for the Rayleigh equation 
is taken to be the same as the pressure at the downstream station 
of the control volume so that 

Pv -P2  = R g  + 2~/~2 (7) 
P 

When P2 - P v  is eliminated from Eq. (6) by using Eq. (7) and 
cavity volume is written in terms of radius, the equation 
becomes 

4meaR\ .. / 3  8mea R \ ' 2  PB-Pv 

Assuming initial conditions,/~ = 0 when R = R m, this equation 

N o t a t i o n  

A t Throat cross-sectional area 
A 2 Downstream duct cross-sectional area 
k Parameter relating duct cross-sectional area, source- 

sink separation, and maximum cavity radius 
(4~faRm/A2) 

? Effective distance between source and sink 
:~ Time-averaged value o f :  
Pl Static pressure at throat 
P2 Static pressure at downstream station 
PB Steady-state pressure at downstream station 

Pv Saturated vapor pressure at bulk liquid temperature 
P~o Static pressure at infinity 
Q Volumetric flow rate at any cross section 
R Instantaneous spherical cavity radius 
R m Maximum spherical cavity radius 
t Time 
tc Cavity collapse time 
U1 Mean velocity at throat 
U2 Mean velocity at downstream station 
V Volume of detached cavity 
V' Volume of attached cavity 
x Distance measured in downstream direction 
p Mass density 
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Figure 2 Total cavity collapse time t c relative to Rayleigh's collapse 
time tcR as a function of duct parameter k (4nlaRm/A2) 

may be integrated directly to give the following result: 

k 2 = (9) 
1 4~'~"R'~ 

The similarity with Rayleigh's original result for a cavity 
collapsing in an infinite medium is clear, and Eq. (9) reduces to 
this form when 4r~,R/A2 < 1. This condition must apply sooner 
or later during the cavity collapse, thus the Rayleigh-type 
collapse is recovered eventually. However, if 4~,R/A2 is unity 
or greater, the collapse motion is modified considerably. 

C a v i t y  c o l l a p s e  t i m e  

The result (Eq. 9) can, in principle, be integrated to determine 
the variation of cavity radius with time and, hence, obtain the 
total time for collapse to occur. It seems to be difficult, if not 
impossible, to integrate Eq. (9) analytically except in the special 
case of a cavity in an unbounded medium (A 2 ~ oo) between the 
limits R = 0 and R = Rm. This integration, originally performed 
by Rayleigh, gives the following result for collapse time tcR: 

V/. P (10) tcR = 0'91468Rm PB-- Pv 

Equation (9) can be integrated numerically in terms of a 
parameter k relating duct size, source-sink separation, and 
maximum cavity radius: 

k = 4rrzea Rm (11) 
A2 

The results of the numerical integration for a range of k values 
are shown in Figure 2, where the total collapse time is expressed 
as a ratio with the Rayleigh collapse time, that is, the value when 
k is zero. It can be seen that the collapse time is increased by a 
small amount for k up to about unity and is substantially 
increased above this value, being between three and four times 
the Rayleigh time for k between 10 and 20. 

V a r i a t i o n  o f  d o w n s t r e a m  p r e s s u r e  

The model can be used to calculate the variation of pressure at 
the downstream station (P2-Pv), which is presumed to be the 
driving pressure in Rayleigh's equation (Eq. 7). By using Eqs. (7) 
and (8) in combination with Eq. (9), it may be shown that P2 can 
be expressed relative to the Borda-Carnot recovery pressure, pa, 
as follows: 

4rJaR/Ram \ / 4 n [ a R \  2 
P2-P~ ~ ~RT-4)-[~-2 ) 

( +4rr/~R, 2 (12) 
PB-- Pv 1 A2 ,~ 

At the start of the motion when R =  Rm, the pressure P2 is 
somewhat below the pressure Pa, and as the collapse proceeds, 
the pressure increases, becomes positive, and then infinite at the 
moment of complete collapse. For the collapse in an infinite 
medium when k is zero, the pressure remains constant equal to 
PB, as expected for the pressure at infinity. 

Since the variation in pressure is both negative and positive, 
the question whether the time-averaged value of the pressure, 
P2 -PB, is zero or not naturally arises. This can be investigated 
by numerical integration of Eq. (12) over the time for the cavity 
to collapse. The integration can be performed in terms of cavity 
radius by incorporating Eq. (9), and it is found that the value of 
the integral is exceedingly small, varying between 10-7 at small 
values ofk  to l0 -4 at k=20.  

It seems reasonable to conclude that a more accurate 
calculation of the integral would have resulted in a value of zero 
for all k, thus confirming the idea that PB, the Borda-Carnot 
recovery pressure, is the mean pressure at the downstream 
station. 

C o m p a r i s o n  w i t h  m e a s u r e m e n t s  

The calculation of the cavity collapse time using Rayleigh's 
result (Eq. 10) would be reasonably accurate if the duct 
parameter k (4~aRm/A2) were less than unity; above this value, 
the error becomes rapidly larger. The critical cavity radius (Rm) 
is surprisingly small; for example, 2 taking the duct cross section 
A 2 to be 800mm 2 and the value ofE a to be equivalent to the 
mean cavity length (about 90mm), the critical cavity radius is 
approximately 0.7ram. Thus Rayleigh's result would be 
applicable only for cavities smaller than about ! mm diameter. 
The initial diameter of cavities in this type of duct cavitation is 
generally considerably larger than this, around 15 to 20mm. 
The value of k is therefore between about 10 and 20, giving a 
cavity collapse time of between three and four times the 
corresponding Rayleigh cavity collapse time. 

Detailed measurements of maximum, that is, initial, cavity 
radius, collapse time and mean attached cavity length are 
available in Lush and Peters I and Lush and Skipp. 2 These 
measurements were made by taking cine films of the cavitation 
at 3000 frames/s and then analyzing the cavity motion frame by 
frame. Length measurements were made by projecting the 
images onto a screen, and accurate assessment of time was 
obtained from a timing light generator. The time history of 
individual cavities could be followed easily and, since their 
behavior was not periodic, it was necessary to obtain averages of 
the various quantities over many cycles. 

Taking the mean cavity length it to be equivalent to the value 
of f , ,  the parameter k can be calculated (Table 1), and the ratio 
of collapse time to Rayleigh collapse time can be found from 
Figure 2. The Rayleigh collapse time, given by Eq. (10), can be 
calculated assuming the effective pressure at infinity is the 
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Table 1 

,~ R m Rayl. Meas. Pred. 
¢r (mm) (mm) t c (ms) tc (ms) tc (ms) Ratio 

Convergent-divergent wedge 
U1 = 25.0 m/s 

Symmetrical wedge 
U1 = 21.7 m/s 

0.0033 87.0 8.61 0.64 2.21 2.05 1.08 
0.013 93.6 7.78 0.56 1.55 1.78 0.87 

0.025 91.2 8.11 0.73 2.52 2.32 1.09 
0.05 63.3 7.83 0.69 1.71 1.86 0.92 
0.117 48.2 8.94 0.72 1.90 1.83 1.04 
0.2 34.6 8.91 0.67 2.75 1.49 1.85 
0.36 29.4 7.83 0.58 1.82 1.1 5 1.58 

Borda-Carnot recovery pressure given by Eq. (5). Hence a 
prediction for actual collapse time can be made and compared 
with measurement. From Table 1, it can be seen that the 
prediction is good except for the symmetrical wedge inducer at 
high cavitation number. In the latter case, the cavitation 
resembles a vortex street, and thus it is likely that the cavity 
collapse is influenced significantly by the rotation of the liquid 
surrounding the cavity. 

Although the source strength ~" is varying, the time-averaged 
source (or sink) strength can be calculated simply by dividing 
the maximum bubble volume by the collapse time. Values 
derived from measurement are between 1 and 1.5 dm3/s, being 
between 10% and 20% of the total volumetric flow rate. The 
occurrence of these relatively large fractions indicates a source- 
sink pair model is required if the flow rate is to be maintained 
constant. Further justification for the neglect of the term in 
U~ ~'/A2 from Eq. (6) can be obtained from these measurements. 
The relative velocity between the cavities was found to be 
between 4 and 8 m/s, and since A2 is 8 cm 2, U~ ~'/A2 is about 
10 m2/s 2. From Eq. (6), it can be argued that the inertia term is 
of order (Pa-Pv)/P, that is, about 120m2/s 2 in this case. Thus 
the term involving ~" is less than one tenth the other term. 
Further, the convection velocity of the detached cavity is found 
to be constant and about one half the throat velocity, and since 
the blockage is about 50%, the local fluid velocity and 
convection velocity are more or less equal; thus virtual mass 
effects should be small except at the moment of complete 
collapse. 

C o n c l u s i o n s  

A model of the dynamics of cavities associated with cavitation in 
a duct flow has been presented. The model yields a good 
prediction of cavity collapse time for a given maximum or initial 
cavity radius if the average separation between the effective 
source and sink is taken to be equivalent to the mean length of 

the attached cavity. The model also gives a time-averaged 
pressure downstream of the cavities that conforms to the Borda- 
Carnot recovery pressure, that is, the same value as achieved in 
steady flow. Finally, when the cavity collapses below a certain 
(fairly small) radius, typically about 0.5 to 1 mm, the Rayleigh 
solution is recovered. 
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